Geometric Singular Approach to Poisson-Nernst-Planck Type Models for Ionic Flows Through Membrane Channels
报告题目: Geometric Singular Approach to Poisson-Nernst-Planck Type Models for Ionic Flows Through Membrane Channels
报告时间: 2018年7月22日,星期日,上午,10:00-11:00
报告地点: 数学与统计学院112会议室
报告人:张明吉(Mingji Zhang)教授,美国New Mexico Institute of Ming and Technology 数学系
报告摘要:
In this talk, a brief description of ion channels and the background of Poisson-Nernst-Planck (PNP) models are provided. Focusing on the key structure of ion channels, a one-dimensional PNP model is derived, from which qualitative properties of ionic flows can be studied in great details. The main idea of Geometric Singular Perturbation Theory is introduced, which is the main tool to study the PNP system. As an example, the theory is applied to a simple case of Poisson-Nernst-Planck system with two ion species, one positively charged and one negatively charged. Finally, interesting research topics and some obtained results related to ion channel problems are discussed.
报告人简介:
Mingji Zhang (张明吉),副教授, 博士生导师,目前就职于美国新墨西哥矿业理工学院。2013年毕业于美国堪萨斯大学,获理学博士学位; 2013-2015年跟随著名数学家 Peter W. Bates 在密歇根州立大学做博士后研究。研究方向为非线性动力系统,微分方程及其应用,特别是在Poisson-Nernst-Planck (PNP)和发展生物学 (developmental biology)中的应用。 研究的主要工具是在非线性动力系统不变流形理论上发展起来的几何奇异摄动理论。 在研究 PNP理论中, 特别是对离子流的动力学行为的研究,做出了突出贡献,得到同行专家学者的高度认可。 已在 《J. Differential Equations》,《J. Dynamics and Differential Equations》, 《SIAM J. Applied Mathematics》, 《SIAM J. Applied Dynamical Systems》,《Advances in Computational Mathematics》,《Communications in Mathematical Sciences》,《Nonlinear Analysis: TMA》, 《Discrete and Continuous Dynamical Systems-A》等国际顶级期刊发表论文20余篇。